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In this paper we investigate the interaction between a solitary wave and a thin
vertical barrier. A set of laboratory experiments was performed with different values
of incident wave height to water depth ratio, H/h, and the draught of the barrier
to water depth ratio, D/h. While wave gauges were used to measure the reflected
and transmitted waves, pressure transducers were installed on both sides of the
barrier, enabling the calculation of wave force. The particle image velocimetry (PIV)
technique is also employed to measure the velocity field in the vicinity of the barrier. A
numerical model, based on the Reynolds-averaged Navier–Stokes (RANS) equations
and the k–ε turbulence closure model, was first checked with experimental data
and then employed to obtain additional results for the range of parameters where
the laboratory experiments were not performed. Using both experimental data and
numerical results, formulae for the maximum runup height, and the maximum wave
force are derived in terms of H/h and D/h.

1. Introduction
For decades wave barriers have been employed as cost-effective structures to protect

harbours and marinas from destructive waves. A common type of barrier designed for
this purpose is a thin, rigid vertical barrier that extends to some distance below the
water surface. This type of barrier allows sediment movements and water exchanges,
and reduces the wave energy inside a harbour or a marina. Much theoretical and
experimental research have been performed to evaluate the efficiency of vertical wave
barriers in terms of transmission and reflection coefficients (e.g. Ursell 1947; Wiegel
1960; Liu & Abbaspour 1982; Losada, Losada & Roldan 1992; Kriebel, Sollitt &
Gerken 1998). However, these existing investigations only considered periodic waves
and most of them did not account for the energy loss due to flow separation at the
tip of the barrier. Furthermore, very little information has been reported on wave
forces acting on the barrier, which is an important element in its design.

In the present paper, while we focus on the estimation of the runup height and
the maximum force induced by a solitary wave on a vertical wave barrier, we also
demonstrate the flow separation patterns and the associated turbulent kinetic energy
(TKE) behind the barrier. In a series of laboratory experiments, the reflected and
transmitted waves are measured by using wave gauges and the pressure distributions
on the barrier are also measured to calculate the force. Furthermore, the particle
image velocimetry (PIV) technique is employed to measure the velocity field in
the vicinity of the barrier. To consider a wider range of physical parameters than
those available from in the experimental set-up, a computational model, based on
the Reynolds-averaged Navier–Stokes (RANS) equations (Lin & Liu 1998a, b), is
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Case A B C D E F G H

h(m) 0.110 0.125 0.150 0.155 0.185 0.200 0.185 0.185
Fr = H/h 0.31 0.08 0.42 0.10 0.05 0.11 0.19 0.34
D/h 0.56 0.60 0.68 0.68 0.75 0.75 0.75 0.75
H/h 0.50 0.10 0.81 0.13 0.06 0.16 0.31 0.59
Fm/Fo 0.413 0.047 0.840 0.086 0.035 0.156 0.350 0.67
Re 30 818 7 530 77 951 14 908 9 969 26 502 44 512 308 080

Table 1. Experimental conditions, wave parameters and measurements.

employed. The results obtained from the computational model are first tested with
the experimental data. Very good agreement is observed. Additional numerical results
are then obtained for the parameter range not covered by the laboratory experiment.
Based on the experimental data and numerical results, formulae for the maximum
runup height and maximum wave force are obtained in terms of the incident wave
height, H , water depth, h, and the draught of the vertical wave barrier, D.

2. The experiments
The experiments were conducted in a glass-walled wave tank, which is 32 m long,

0.60 m wide, and 0.90 m deep. A rigid thin barrier, with a thickness of 1.8 cm, was
installed vertically with an adjustable draught at a distance of 12.5 m downstream
from the wavemaker. A piston-type wave generator is used to generate solitary
waves with different wave height to water depth ratio, H/h. Table 1 lists the set of
parameters, D/h and H/h, used in the experiments. In the same table the measured
maximum runup on the barrier, H/h, and the normalized maximum force, Fm/Fo,
in which Fo = ρgh2/2, are also reported. Note that no breaking wave situation is
considered. Capacitance wave gauges are employed to measure wave heights in front
and behind the barrier. Eight pressure transducers, OMEGA PX26 pressure sensors
with a maximum output of 10 mV, are installed on the front and back face of the
barrier. The data sampling rate for both wave gauges and pressure tranceducers is
100 Hz. PIV is employed to measure the velocity field. The details of the PIV system
used in the present experiments can be found in Al-Banaa (2000). The field of view
(FOV) for the experiments is 18 cm by 18 cm and is placed at the downstream edge of
the barrier and just above the bottom of the wave flume. Each experiment is repeated
100 times and the ensemble-averaged velocity field and the turbulent kinetic energy
(TKE) are calculated.

Using the dimensional analysis, the maximum force Fm can be expressed as

Fm = φ(ρ, g, h, H, D, ν), (2.1)

which can be regrouped into the following dimensionless form:

Fm/Fo = ψ(Fr, D/h, Re). (2.2)

The Froude number, Fr, and the Reynolds number, Re, of the physical processes can
be defined as

Fr = U/
√

gh = H/h, Re = UL/ν = (H/h)(H/h + D/h)g1/2h3/2/ν, (2.3)

in which ν is the kinematic viscosity of the fluid. The characteristic velocity, U , and the
lengthscale, L, have been specified as U = (H/h)

√
gh, and L= (H + D), respectively.
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The corresponding values of Froude and Reynolds numbers for the experiments are
also listed in table 1. The Reynolds number ranges between 103 and 105. Within this
range, the normalized maximum wave force becomes less sensitive to the variation of
the Reynolds numbers. Hence, equation (2.2) becomes

Fm/Fo = G(H/h, D/h). (2.4)

Similar analysis can be carried out for the normalized maximum runup height on
the barrier, H/h, with the same conclusion that for high Reynolds number flows the
normalized maximum runup height is a function of D/h and H/h.

3. The computational model
The computational model, cobras, which solves the two-dimensional RANS

equations with k–ε turbulence closure model, is implemented to simulate the
experiments and to extend the range of parameters of interest. The RANS equations
for the ensemble-averaged velocity, 〈ui〉, and the ensemble-averaged pressure, 〈p〉, are
well-known and can be expressed as

∂〈ui〉
∂xi

= 0, (3.1)

∂〈ui〉
∂t

+ 〈uj 〉∂〈ui〉
∂xj

= − 1

ρ

∂〈p〉
∂xi

+ gi +
1

ρ

∂〈τij 〉
∂xj

−
∂〈u′

iu
′
j 〉

∂xj

, (3.2)

in which i, j = 1, 2, and 〈τij 〉 is the viscous stress and −ρ〈u′
iu

′
j 〉 denotes the Reynolds

stress due to the turbulent fluctuations. We note that u′
i denotes the ith component of

the turbulence velocity and 〈 〉 the ensemble average. In cobras, the Reynolds stress
is modelled by the nonlinear stress–strain relation to allow anisotropic turbulence.
In this turbulence model information on the turbulent kinetic energy (TKE), k, and
its rate of dissipation, ε, are needed. Therefore, balance equations for both k and ε

are also solved in cobras. The detailed expressions for the nonlinear Reynolds stress
model as well as the k–ε equations are lengthy and can be found in the literature (e.g.
Lin & Liu 1998a). The two-step projection method is employed to solve the RANS
equations, while the volume of fluid (VOF) method is used to track the free surface
location. cobras has already been tested with experimental data for wave shoaling
and breaking in the surf zone (Lin & Liu 1998a, b) as well as for wave–structure
interaction problems, in particular for solitary wave propagation over a submerged
rectangular obstacle (Chang, Hsu & Liu 2001).

4. Results and discussion
Although all of the experimental runs have been simulated by the computational

model, we only present results for case A with H/h = 0.31 and D/h = 0.56 as a
means of illustrating the physical process. In figure 1(a, b) the wave gauge data at
x = −8.50 m (upstream of the barrier) and at x = 2.50 m (downstream of the barrier)
are compared with numerical results. The agreement for the main wave form is
excellent. However, discrepancies exist for the small trailing waves. In figure 2, we
show a sequence of snapshots of the measured ensemble-averaged velocity field and
the normalized TKE as the solitary wave passes under the vertical barrier. The TKE,
defined as k =(1.33/2)〈u′

iu
′
i〉 and shown by the contour lines, has been normalized

by the square of the phase speed of the solitary wave, c2 = g(H +h). In figure 2,
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Figure 1. Comparisons between the experimental data and numerical results of the time
histories of the free surface elevation at two locations for case A: (a) incident and reflected
waves at x = −8.50 m; (b) transmitted waves at x =2.50m. The dashed line and the solid line
correspond to the experimental data and numerical results, respectively.
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Figure 2. Snapshots of the measurements for ensemble-averaged velocities (vectors) and the
normalized turbulent kinetic energy (contour lines) as the solitary wave passing the vertical
barrier. The TKE is normalized by c2 = g(H + h) = 1.42m2 s−2.

the crest of the solitary wave arrives at the barrier at t = 0 and the phase speed of
the solitary wave for Case A is 1.19 m s−1. It is clearly shown that as the wave crest
approaches the vertical barrier, flow separation occurs behind the barrier and a large
eddy is generated. The eddy is advected downstream with a speed much smaller than
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Figure 3. (a) The comparison between numerical results (solid lines) and experimental data
(dashed line) for the wave force acting on the barrier for case A. (b) The snapshot of the free
surface profile at the moment when the maximum wave force occurs.

the phase speed. At the same time, the eddy diffuses in all direction and reaches
the free surface. The intensity of the TKE correlates with the location of the eddy
very well and it reaches a maximum value long after the wave crest has propagated
downstream from the barrier. Depending on the incident wave height and the draught
of the barrier, the TKE could be significant. In Case A, the maximum TKE value
is about 6% of the square of the phase speed and, hence, the maximum turbulence
velocity is about 30% of the corresponding ensemble-averaged velocity (see the panel
for time = 0.34 s). Calculating the kinetic and potential energy associated with the
incident, reflected, and transmitted waves, respectively, we estimate that in case A the
total energy of the reflected wave is about 12.4% of the total energy of the incident
wave, while the total energy of the transmitted wave is about 64.7%. Therefore, in
this case, about 23% of the incident wave energy is dissipated primarily through the
flow separation near the tip of the barrier.

The wave forces acting on the barrier can be determined directly by integrating the
measured pressures over the submerged portion of the barrier. Figure 3(a) shows the
time histories of the force for the case discussed above. Both experimental data and
numerical results are plotted together. The agreement is excellent. The free surface
profile at the time when the maximum positive force occurs is shown in figure 3(b).
The maximum force occurs slightly before the runup on the front side of the barrier
reaches the maximum runup height, H . To further ensure that the numerical solutions
are accurate, the incident wave heights and the maximum wave forces obtained from
experiments and numerical simulations are plotted against each other in figures 4(a)
and 4(b), respectively for all the cases listed in table 1. The agreement is again
excellent. Therefore, we have confidence in using the numerical model as a tool to
further explore the problem with a wider range of parameters.

One of the important design consideration for a vertical barrier is the maximum
runup height, H . To find the relationship among, H/h, H/h, and D/h, we have
performed 67 numerical simulations for 0 � D/h � 1.0 and 0.032 � H/h � 0.42. The
corresponding Reynolds numbers vary from 560 to 6.27 × 106. It is important to point
out that simulations were also performed for the prototype scale to ensure that the
scaling effects are not important. Using the experimental data as well as the numerical
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Figure 4. Direct comparison of the experimental and numerical results for (a) maximum
runup height for all the cases tabulated in table 1, and (b) maximum wave forces (dot-dashed
line is 45◦ straight line).
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Figure 5. The maximum runup, H/h, at the barrier as a function of H/h and D/h. The solid
lines represent the suggested equation (4.1), and the symbols denote different D/h values.

results, we found the following relationship:

H/h = α(H/h)β, (4.1)

where

α = 2.0 + 0.81(D/h) − 0.26(D/h)2, β = 1.32 + 0.20(D/h) − 0.35(D/h)2. (4.2)

In figure 5, equation (4.1) with (4.2) is plotted for H/h in terms of D/h and H/h.
It is clear that the maximum runup height increase as the incident wave height and
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Figure 6. The maximum wave force, Fm/Fo, as a function of H/h and D/h. The solid lines
denote the suggested equation (4.6) and the symbols denote different D/h values.

the draught increase. When D =h, i.e. the vertical barrier is completely down, the
incident wave is completely reflected. Equation (4.1) becomes

H/h = 2.55(H/h)1.17. (4.3)

The analytical solutions by Byatt-Smith (1971) and the experimental observations of
Maxworthy (1976) have shown that the maximum runup, H , can be approximated as

H/h = 2.0(H/h) + 0.5(H/h)2. (4.4)

The differences between equation (4.3) and (4.4) are very small for 0 � H/h � 0.7. The
maximum difference is only about 2% at H/h = 0.7. When D/h = 0, the maximum
runup becomes

H/h = 2.0(H/h)1.32, (4.5)

When the wave amplitude and draught ratios are moderate, H/h � 0.3 and D/h �
0.25, equation (4.5) can be used as an approximation of the maximum wave runup
H/h.

Using all the experimental data and the numerical results for the maximum force,
the following dimensionless formula can be obtained:

Fm/Fo = δ{1 − exp[−(H/h)γ ]}, (4.6)

where

δ = 2.4 + 0.22(D/h) + 3.11(D/h)2, γ = 2.65 − 2.08(D/h) + 0.57(D/h)2. (4.7)

Equation (4.6) is plotted in figure 6. Overall, the effects of nonlinearity, H/h, are
much more important when D/h is larger. When D = h, i.e. the vertical barrier is
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completely down, equation (4.6) becomes

Fm/Fo = 5.73{1 − exp[−(H/h)1.14]}. (4.8)

The above equation is similar to that presented by Cooker, Weidman & Bale
(1997), and further approximation by expanding the exponential to the leading-
order approximation for small H/h, i.e. H/h � 0.20, and using equation (4.3), leads
to equation (4.8) becoming a linear function of H/h, which can expressed as

Fm/Fo = 2.17(H/h). (4.9)

On the other hand, when D/h = 0, equation (4.6) becomes

Fm/Fo = 2.40{1 − exp[−(H/h)2.65]}. (4.10)

The maximum wave force can be rescaled by the hydrostatic force on the vertical
barrier using the maximum runup height, i.e. 1

2
ρgH

2
. For a small incident wave

height, the leading-order maximum wave force can be expressed as

Fm ≈ 0.60
(

1
2
ρgH

2)
. (4.11)

The scaled maximum wave force is independent of H/h (or H/h) for small values
of H/h. Thus, the maximum wave force is roughly 60% of the hydrostatic force in
terms of the maximum runup height H/h at the vertical barrier.

5. Concluding remarks
Based on the experimental data as well as the numerical results, we have derived

two useful formulae for estimating the maximum solitary wave runup height and the
maximum force on a vertical barrier. These formulae are expressed in terms of incident
wave height to depth ratio, H/h, and the draught to depth ratio, D/h. They are valid
for non-breaking solitary waves. These formulae should be useful in designing such
wave barriers. During the experiments reported here, velocity field data were also
taken by using the PIV technique. Flow separation and vortex generation were clearly
observed (see figure 2). The turbulent kinetic energy associated with the vortex can be
very significant. The detailed analysis of the flow field and the comparisons between
experimental data and numerical results will be reported elsewhere. New laboratory
and numerical experiments are being carried out for the periodic incident wave
case.
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